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The evolution equations for the density distribution and its two phase-space point correlation
for nonlinear oscillators under the influence of an external random driving force are derived. We
found that the correlation function obeys a Fokker-Planck-like evolution equation with decoherence,
diffusion, and source terms. An asymptotic steady state solution is discussed, where the small-
amplitude and short-wavelength spatial fluctuations of density (“microstructure”) are found to be
the special effect of the coherent random driving, distinguishing it from incoherent noise.
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I. INTRODUCTION

The influence of random forces on nonlinear oscillators
is a common problem in random processes theory, with
many applications in all fields of science. For an individ-
ual particle experiencing a randomly applied force, the
resulting particle motion has the characteristics of Brow-
nian motion (see, e.g., [1]). Assuming that the probabil-
ity function of finding a particle in the phase space is in-
dependent of the initial phase-space coordinates (Marko-
vian process), the evolution equation of the particle dis-
tribution function is reduced to the Fokker-Planck equa-
tion.

A similar but not identical problem is the dynamics. of
the particle distribution of a nonlinear oscillator driven
by a random force, which is the same for all particles.
One example of such a situation is the effect of rf noise
in high-energy particle accelerators [2-5]. Thus, one con-
fronts a somewhat unusual problem of a random coherent
driving force. The physics of this problem is quite dis-
tinct from the common incoherent-noise stochastic mod-
els and in our opinion deserves a study even apart from
its possible particle accelerator applications.

For our random-driving system, the average (over the
ensemble of driving forces) distribution function can be
shown to satisfy the same Fokker-Planck evolution equa-
tion that appears when each particle is affected indepen-
dently (incoherent noise). Indeed, for a small-amplitude
time varying driving force, the response of the (periodic)
trajectory of a nonlinear oscillator is determined by the
spectral component of the force near the harmonics of the
frequency of the oscillations. The important point is that
the amplitudes of different harmonics of a sufficiently
long section of random signal are statistically indepen-
dent. Thus, to the zeroth-order approximation, the co-
herently random driving force and the Brownian motion
with statistically independent random forces produce the
same results. Many extensive studies have been pub-
lished [2-4], where the Fokker-Planck equation was ana-
lyzed and solved using averaging techiques in the small

1063-651X/94/49(5)/3881(7)/$06.00 49

noise and fast oscillation regime. The theory has been
verified by numerical simulations [4] and has also been
confirmed by experimental observations [5].

Beyond the zeroth-order approximation, how do the
individual density distributions differ from the average
one? What is the space time correlation in the density
distribution function? Will the density fluctuations be
smoothed out by the random noise? What is the effect
of the nonlinearity on fluctuations? In the present paper,
we address these questions by studying the fluctuations
in the ensemble of density distributions, which can be
described by a correlation function in both phase space
and time, as is conventional in kinetic theories. The cor-
relation function formalism is most adequate as it allows
one to quantify the leading-order effect of the noise “co-
herence.”

In this paper, we study the spatial spectrum of the
fluctuations (same-time correlation function) in the limit
of small noise and large nonlinearity. For accelerator
physics, the practical importance of such density fluc-
tuations is not fully clear at this time. The formalism of
the present paper provides, however, the tools to study
it in the future. It can be conjectured that many aspects
of coherent instability dynamics, such as the source of
short-wavelength perturbations (for microwave instabil-
ity), Landau damping rates, etc., are affected by the den-
sity fluctuations. The fluctuations could be observable
in the longitudinal Schottky spectra of the bunches [6].
A similar coherent-noise fluctuation contribution should
be observable in the longitudinal Schottky spectrum of
the coasting beam of stochastic cooling systems and may
have an impact on their performance that is not appre-
ciated at the present time.

The plan of the paper is as follows. A model of a
nonlinear oscillator with random coherent driving force
is introduced. After defining the correlation function, we
obtain a self-contained description of fluctuations by de-
riving the evolution equation for the correlator. A solu-
tion of this evolution equation in the limit of small noise
and fast oscillations is discussed in Sec. IV. The conclu-
sion is given in Sec. V.
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II. MODEL

We consider the general form of the Hamiltonian for a
nonlinear oscillator with a random driving force,

2

H =% +9(a) + hip, )6 (1), 1)

where g(g) is an arbitrary nonlinear potential and £(t) is
for simplicity, yet without loss of generality, chosen to be
the white noise, i.e.,

(€@E[E)) ey = 8(¢ 1), (2)

where the ensemble average is denoted by (- --)(¢}. For a
rf voltage noise, h(p,q) = g(g) and for the rf phase noise,
h(p,q) = p. The exact form of the perturbation term
h(p, q) may affect the calculation of diffusion coefficients.
However, the formalism to be discussed is independent
of the form of the noise term.

In the absence of particle interactions (or collisions),
the evolution of the density distribution is governed by
the Vlasov equation,

of (dg f of
(B Gew) G+ (pr e0) =0 0
In what follows, the Vlasov equation will be used instead
of the stochastic equations of motion in order to derive
the evolution equations for the statistical average of den-
sity function and correlation function, etc.
The statistical properties of the fluctuating quantity f

are appropriately defined by the ensemble average of the
distribution function,

f(pa,t) = (£ (P, 0, )6y (4)

and the correlation function of the density fluctuations
in adjacent phase-space points,

- .f_(pa q, t)]
L INGE (5)

We limit ourselves by considering only the same-time cor-
relator K and study therefore only the spatial, but not
the time, correlation properties of the fluctuations.

Hereafter, we use the action-angle variables J, ¥ of the
unperturbed [h(p,q) = 0] Hamiltonian (1), which will be
assumed to be known, to analyze these evolution equa-
tions. The perturbed Hamiltonian H in these variables
has the form

K(p,q,p,4,t) = ([f(p, ;)
x[f(B,4,t)

H = Ho(J) + V(J,9)¢(2), (6)
where V(J,¥) = h(q(J, ¥)) and Ho(J)

known functions.

= p?/2+g(q) are

III. EVOLUTION EQUATIONS

Both the average density f and the correlator K are
evolving in time. We will derive the evolution equations
for both quantities using basically the conventional tech-

niques of the theory of stochastic differential equations
[1]. It had been shown previously [2—4] that the evolution
of the average density obeys the Fokker-Planck equation.
However, to the authors’ knowledge, the evolution of the
density fluctuations has never been studied.

In the action-angle variables, the average density and
the correlator are given by f = f(J,¥,t) and K =
K(J,¥, J, ‘il,t). We will also use the notation ¥ = ¥+ ¢
and compressed notations for the phase-space coordi-
nates (1) = zy; = (J, ) and (2) = z3; = (J, ¥). Taking
the infinitesimally small time increment At, one obtains
the derivatives of the average density

oF(1) _ . AF(1)
ot = Am A (7)

and similarly the correlator

0K .
o = lim LAF)f(2) +
HAF(1)AS(2)) -

)
—f2)(Af(1)) - (AF(1))(AF(2))]- (8)
The increment of the density Af = f(t + At) — f(t) can

be expressed, due to the conservation of the phase-space
density, as the second-order Taylor expansion,

(F(M)Af(2))
f)(af(2)

2
8fA 1+1 of
oz;

Af = 2 Oz;0zxy,

A:E,‘A:Bk, (9)

where a summation over repeating indices is assumed.
The increments of the phase-space variables Az; in time
At can be obtained from the stochastic equations of mo-
tion discussed in Appendix A. The second-order terms
in Az were kept because of the properties of the white
noise, where the average of quadratic terms Axz;Azx; pro-
duces terms linear in At. Any higher order terms result
in higher than the first order in At contributions. The
expansion (9) and the subsequent averaging procedures
are the standard techniques in the Fokker-Planck equa-
tion derivation in stochastic analysis (see, e.g., [1]).

Making ensemble averages, one finds that the averages
of products of z’s and f’s are factorizable, i.e.,

(AF(1) = (Az) <‘9f( )> + 5 (Azuaaw)
o5()
% <81L'1,'3.’B1k> ’ (10)
(AFa7@) = ez (SO )

etc. This is due to the fact that the increments Axz;
depend on the noise £(t) only in the time range between
t and t + At. Substituting Egs. (10, 11) into Egs. (7, 8),
one obtains then the evolution equations for the moments
of the density in the form

17} f . af 1 o%*f

Bt AltI—I}O At { <Amh> 8:131,' + 5 (Athzlk> 6211'81‘1]‘, }

(12)
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i . (13
HAzuATa) ( Oz1; Oz + 0z1;0Tas (13)

The moments of Az’s that are present in Egs. (12,13)
can be computed quite straightforwardly by using the
conventional techniques from the theory of stochastic dif-
ferential equations. The details of this calculation are
given in Appendix A. Combining Eq. (12) and the mo-
ments Eq. (A4) in the Vlasov equation Eq. (3), the evolu-
J

0K
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B
I
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tion equation for the average f becomes the conventional
Fokker-Planck equation,

of [1{ @V av & av of
o [5 (aJa\pﬁ ~ 972 3\1’) +w()| 5

1(?vav 8V ov\aof

"2\ 89285 08¥8J Y | 8J

2 _ 2 —

1(ov) &f 1(8vV] &°F

t2\57) ez T 2\5w ) a2

v av of

T8V 3J 894J’ (14)

where V =V (J,¥) and w(J) = %ﬂ. For the correla-
tor K, one obtains an evolution equation that is coupled
to the mean f,

0K

aJ

L(PVoV _ oV ov
av2 9J 9vaJ v

8¥ 8J 8vaJ

. (_6_1/'_)2821{ 1(8V)282K av av 8K

w(J)

1
2
Ji(evev _over),
2\ 8Jov 8aJ 8J2 8%

v | a2

8V 8V 82K

8J ] o9z " 2
oV v 82K

ooy 8J o 0¥ oeJ 8J ¥

where V = V(J, ¥).

IV. SMALL NOISE AND FAST OSCILLATION
REGIME

A. Averaged evolution equations

On a long time scale, and in the small noise and fast
oscillation regime, one can average the dependence of all
quantities along the unperturbed trajectories J = const,
¥ = w(J)t. This approximation is well known under the
name of “averaging of fast-oscillating variables” in the
theory of Fokker-Planck equations (see, e.g., [1]), and was
also used in previous studies of the average density diffu-
sion [2—4]. For the Fokker-Planck Eq. (14), the procedure
is technically very simple. One assumes that the density
f is independent of ¥ by taking both the averages over
¢ and ¥ (with the double average notation ({...))) for all
coefficients. The resulting averaged Fokker-Planck equa-
tion becomes the well known diffusion equation [2—4],

of a of

8t aJ (16)

0K

oY
~\ 2 ~ ~ o~

1 (av) oK 1 (av)2321< oV oV 0°K

2

oK
aJ

992 8] 09aJ ¥

1 (a‘-’-f/ v
2

v af/)

8% 8J 0%0F
OVOV BK _OVOV BK BV IV &K
OV oY 8J8] 0¥ 8J 8J9%  OJ Y 8THJ
9V 9V 0f(1) 9f(2) _ 8V 8V 9f(1) 8f(2)

ov o7 &K
aJ 8J avoY¥
v av af(1) 8f(2)

oV oV 97(1) 95(2)

aJ aJ 8¥ 9¥ '’ (15)

8J 8% 0¥ 4oJ

where the diffusion intensity D; is given by (see Ap-
pendix A for details)

(82))- 1 o

where V;,(J) are the harmonic amplitudes in the Fourier
expansion of V(J, ¥) in the 27 periodic variable ¥. This
form of Fokker-Planck equation was verified experimen-
tally (2].

The implementation of the same small noise and fast
oscillations approximation in the evolution Eq. (15) for
the correlator is somewhat more subtle. We will postu-
late at this point (and confirm it by the final results) that
the correlator K does not depend on the phase ¥ but re-
tains the dependence on the phase difference ¢ = ¥ — W,
The procedure for the evolution equation derivation then
parallels that for the Fokker-Planck equation: one adds
an extra averaging in ¥ in all moments in Eq. (13) while
retaining the dependence on ¢, and assumes K to depend
on the phases ¥ and ¥ only through the combination

D;(J)=
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¢ = ¥ — ¥, Using the moments calculated in Appendix
A in the formulas (A6) and (A7), one obtains thus

0K BK 3 3K

B (D.]( )HK) + Ge(J, J,(p)(92

WFyi aJ dp?
- 8f(J) 8f(J) 82K
+FJ(J,J,«>)( 1) ’;(j)+8JaJ.), (18)

where the functions Fj, Gy appear from the moments in

(A6), (AT),
. 0% 2)

av,
w(J,J,0) = 22(‘ aF

N Z OV ( J) aV_,:(J) Jing

)

Fy(J,J,0) = Zn2vn D\V_n(J)ei™. (19)

In the right-hand side of Eq. (18), the first term de-
scribes the decoherence due to the amplitude dependent
frequency, while the remaining terms depict the Fokker-
Planck-like diffusion due to the noise, and a source term.
It is particularly interesting to note that the evolution
equation of the correlator K contains an inhomogeneous
source term, which depends on the gradient of the av-
erage distribution function. This means that the noise
generates the fluctuations of density by shaking the dis-
tribution as a whole (hence the proportionality to %).
In the following, we will discuss the solutions of Eq. (18)
in the small noise limit.

B. Asymptotic solution for the correlator

In the absence of noise, the solution of Eq. (18) for the
correlator is trivial as only the first term in the right-hand
side survives. The correlation “decays” or rather “deco-
heres” due to the phase mixing. Indeed, the general solu-
tion is an arbitrary function of J, J and ¢+[w(J)—w(J)]t,
so that for large enough time the correlation function be-
comes a fast-oscillating function of J,J. The time scale
of this decoherence is 7. ~ 1/a0 7, where o = |%¢| and o5
is the rms value of J for the distribution f. In the high-
energy accelerators, processes such as beam decoherence
after a longitudinal kick, filamentation following a misin-
jection, or Landau damping of coherent instabilities are
related to this phenomenon.

In the presence of noise, the diffusion coefficient is
Dj ~ |V|? and the characteristic diffusion time is
74 ~ 0%/Dy;. In the limit of small noise, the decoherence
time is much shorter than the diffusion time. Further-
more, the correlation “injection,” that is provided by the
inhomogeneous term in Eq. (18), varies only on the slow
time scale of diffusion. As a result, a quasistationary
equilibrium correlation density will be established due

to a balance between the slowly changing “injection” of
correlations and their fast decay.

The shortness of the decoherence time manifests itself
as well in the separation of the “spatial” (variables J, J)
scales of the correlations and the density f. One can
visualize the dynamic process of the generation of corre-
lations as follows. Correlations are injected first at the
long wavelength A ~ o; by the source term, which arises
from the perturbation to the distribution, shaken as a
whole by noise. The “decoherence” process transports
the correlations from long- to short-wavelength region.
The small diffusion in action J is the essential dissipative
mechanism at short wavelengths, leading to the decay of
correlations on the long time scale. On the other hand,
the phase diffusion, described by the second derivatives
in ¢ in the evolution equation, is overshadowed by the
fast “decoherence.” Our discussion below is based on this
cascade scenario of different time scales.

To analyze the quasistationary solution, we drop the
time derivative of K and the phase diffusion terms in
Eq. (18) . Another simplification comes from noticing
that the correlator K is sharply peaked at the small dis-
tances ¢ = J — J, where the “decoherence” term [first
term in the right-hand side of Eq. (18)] is small. As-
suming that |g| < o, expanding all the coefficients in
Eq. (18) to the leading order in g and keeping only the
dominant derivatives in q, we obtain

0K 8%’K 0’K
= L9p—— =
aqa‘p+ 32+F( )[c e ] 0, (20)
where the quantities
dw(J
a= df] ), D =Dj;(J), F(p)=FiJ,J ),
and
F 2
__ (21
aJ
depend on J as a parameter. N
We introduce now the Fourier spectrum K (k, ¢) of the

correlator K (g, ¢),

- 1 [ .
Kiko) = 5 / dq K (g, 0)e™.

When transformed to the wave vector domain, the solu-
tion of Eq. (20) is given by (see Appendix B)

0, if nka < 0,

2 = ~ 2 21
K(k,p) {Zn;ﬁanTn(Sf’)e_%"i’ otherwise, (21)

where the functions T}, (¢) are defined as

Tn(¢)=exr>{—in(so——/ do, F %)} (22)

and the coefficients B,, as
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c 2 the amplitude of oscillation of particles and a contin-
Bn = I / dp F(yp) uous excitation of the phase-dependent density pertur-

0

« exp {in ((p _ %5 : den F(<p1)) } . (@3

The cofficient By is zero.

The dependence of the correlator spectrum on the
phase ¢ is presented in the expression of Eq. (21) as an
expansion in the set of functions T,,(gp) of Eq. (22) rather
than the conventional Fourier harmonics because of the
phase dependence of the diffusion intensity in Eq. (20),
which couples different harmonics.

The “correlation radius” of fluctuations g. (the inverse
characteristic wavelength) of the respective component n

. 2D
is seen to be ¢, ~ (———L|3na|

1/3

) / < 0. A special feature of
the spectrum K in Eq. (21) is its discontinuity. It is easy
to see that this discontinuity is the manifestation of the
long ~ 1/|q| “tail” of the correlator K. Indeed, in the
limit of small noise and large nonlinearity with |g| > g¢.,
both “diffusion” terms in Eq. (20) (proportional to the
second derivative in ¢) are much smaller than the first
term. Therefore, the solution of Eq. (20) in this region is
given by

7]
K(q,9) = aiq/o do1 F(p1).

Thus its Fourier spectrum K (k, ) has a step-function-
like dependence on k.

It is possible to obtain a more general expression for
the “tail” of K for |g| > g. that is not limited by the
condition |g| < o7 by keeping the same terms of the
primary evolution Eq. (18) (i.e., the first term in the
right-hand side and the inhomogeneous term) without
expanding in q. The resulting expression for the “tail” is

B 1 df(J,t) f(J,t)
Cw() -w()] 8 8J

¢ N
x / doy F3(J, 3, 01)- (24)
0

The intensity of the fluctuations is characterized by the
rms amplitude P, defined as the value of the correlator K
at ¢ = 0, = 0. This can be calculated by integrating the
spectrum K, ie., P = [dk K(k,p = 0). From Eq. (21),
we obtain

K(J,J,p,t)

I'(1/3) B,
- 1/3 2/3pl/3 Z 2/3°

(&) 3l )P/3D/7(T) T
Thus, the fluctuation intensity is of the order P ~
(D/a)*? (vecall that B, ~ |V,|? ~ D) and will be small

for small noise and large nonlinearity.

(25)

n

V. CONCLUSIONS

We derived the evolution equation for the same-time
correlation function of the density distribution fluctua-
tions in the phase space of a nonlinear oscillator under
the influence of coherent (same for all particles) random
driving force. This driving produces both a diffusion in

bations. We found that the two phase-space point cor-
relation function satisfies a Fokker-Planck-like diffusion
equation with a decoherence term and a source term. The
source term is proportional to the product of the diffu-
sion intensity and the gradient of the average distribu-
tion function, which satisfies the Fokker-Planck diffusion
equation. In the limit of weak noise with large nonlinear-
ity, the fluctuations of the correlation function in the ac-
tion variable are characterized as small and short-ranged
“microstructure” on top of a smooth mean distribution
function.

We found that the phase mixing (“decoherence”) of
density perturbations due to the amplitude-dependent
frequency of oscillations plays a major role in the dis-
sipation mechanism of the fluctuations. A cascade-type
solution was found for the case of small noise and large
nonlinearity, where the diffusion time is much longer than
the decoherence time. This means that the correlations
are initially created at a long wavelength, and then are
transported to the short-wavelength region by the deco-
herence and finally dissipated by the diffusion process.
The presence of such an “inertial” (nondissipative) range
is manifested in the long “tail” of 1/q dependence in the
the correlator, where ¢ = J — J.

The correlation function formalism that we introduced
is based on the ensemble of different realizations of the
driving forces. It appears reasonable to assume that the
system under consideration possesses the usual ergodicity
property and the same correlators would emerge when
averaging over time on a single realization of the process.
The proof of that however is not trivial and should be
addressed in the future.
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APPENDIX A: EVALUATION OF MOMENTS

In this Appendix, we calculate the moments of Az’s
that enter the evolution Egs. (12) and (13) by employing
the conventional methods of stochastic differential equa-
tions [1]. We start with using the Hamilton equations of

motion for the Hamiltonian (6) to present the increments
AJ and AV in the form

AV = w(J)At + A\I’l + A\I’z,
AT = AJ, + AT, (A1)

where AJ;, AV, are the first-order terms,
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F>1% t+At

gy ’ /
Adi=-—gg [ dr ),
aV t+At , ,
AT, = W/t dt' £(t'), (A2)

and AJ,, AV, are the second-order ones,

B2V oV B8V oV [itAt |
Mz—‘(a—wiﬁr*—awaféa)/ dt

t!
dll ! "
x / ¢ E(E)E(E"),

8%V 8V BV VY [tHAr
A%*(“—a.zawrﬁéa)[ dt

X /t ! dt' dt" £(t')E(t"). (A3)

Averaging over the é-correlated random process ¢ yields
then the following expressions for the same-point mo-
ments of Az’s (no mixing of 1 and 2 variables),

2
(AJ) = Azt(aVBV

8%V v
Bh =5 w207 - )

avoJ 8v

(AT) = w(J)At + <Ax112>
2V 9V 82V oV
w(NAt+ 5 (aJa\p o] ~ 872 aw)

ov
2
(@07 = (aTh = at aq,) , ™
)%
(aw?) = (au) = o ( )
oV ov
(AJAY) = (AJ,A¥,) = —Atﬁbj’
and for the different-point moments,
. v av
(AJAJ) = (AT AT, = Ataq’ 35"
- - oV av
. - oV oV
(ATAT) = (AN AT = ~Atgs o, (A5)
~ N av av
(ATAT) = (AU ATy) = At

In the latter expressions, we used the notations V =
V(J,¥) and V = V(J, ¥).

In the small noise and fast oscillations approximation,
the moments have to be averaged over the phase ¥ while
keeping the dependence on the phase difference ¢ = ¥ —
0. Using the Fourier series V(J,¥) = 3V, (J)e"?,
one obtains

(Aagy = -Atz n OVl

(Aw) = w(J)At
(@97 = A A, (46)
((aD)? ,
(ATAY) =

Note here that the relation (AJ) = ;& (((AJ) ) was
verified experimentally [5] and was proven in general for
all Hamiltonian systems with random noise [2,3]. Simi-
larly, the phase averaging for the different-point moments
yields the expressions

(ATATY = ALY nPV, Ve

(ATATY) =

(avad) =o, (A7)
(ATATY = Atz %‘; 6;’;" gine

APPENDIX B: SOLVING THE EVOLUTION
EQUATION FOR THE SPECTRUM

The evolution equation for the spectrum K is obtained
from the evolution equation (20) for the correlator K to
be

2

il K +[2D - F(p)]k2K

kD = cF(p)é(k).  (B1)

The solution of the homogeneous equation, which is pe-
riodic in ¢, can be obtained by applying the separation
of variables technique. The solution, Kx(k,¢) = T(k, ¢),
is a linear combination of the nonorthogonal eigenmodes
given by

~ 3
Y BuTu(p)e™ e, (B2)
n#0

T(k,p) =

where B,, are arbitrary constants and

Tulo) = exp {~in (v - 55 [ dor F ()} ®3)

Similarly, the solution of the inhomogeneous equation
(B1) is given by

if nka < 0,

- 0,
K(k,¢) = { T(k,p), otherwise, (B4)
with the boundary condition,
dT(k=0
iaM = cF(p). (B5)

de
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By changing the variable ¢ to the variable

1 14
! — —_——
v'=¢-3p dp1 F(p1), (B6)

the coefficients B, for n # 0 can be obtained as

2w
= do F
" 2rna ° g (90)

X exp{in( - 5% /ov dpy F(gol)) } (B7)

The coefficient By inp is zero.
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